International Conference on

Distributed Systems: Optimization
and Economic-Environmental Applications

(DSO’2000)

Proceedings

Editors:

I. 1. Eremin
I. Lasiecka
V. 1. Maksimov

Ekaterinburg, Russia,
30 May — 2 June, 2000



PARALLEL METHODS FOR QUASILINEAR SINGULARLY
PERTURBED REACTION-DIFFUSION EQUATIONS !
P.W. Hemker, G.I. Shishkin, I.V. Tselishcheva
(CWI, Amsterdam, the Netherlands; Ekaterinburg,

Institute of Mathematics and Mechanics UB RAS)

Kcywords: clliptic PDEs, boundary layer, diffusion with predominant
reaction, parallel computations, e-uniform convergence.

On the rectangle D, where D = {z : 0 < z, < d,, s = 1,2} we
consider Dirichlet’s problem for the quasilincar singularly perturbed elliptic

equation )

Diy(u(z) = & T au(e) (@) - o(z,u(z)) =0, z€D, (1)

5=1,2 :
u(z) = p(z), zET, (ib)

Here I' = D\ D, the functions a,(z), g(z,u) and ¢(z) are sufliciently
smooth, respectively, on the sets D, D x IR and on the sides T';, I' = U;T’;,
j=1,...,4, p(z) is continuous on I". Assume 0<ag < a,(z) < a%, z €D,

(6/6:1) g(x,u) > 9o > 0 for all (x,u) € D x [—M{g}, M{g)] , (2)

where M{y) is a sulficiently large number. The perturbation parameter €
takes arbitrary valucs from the half-interval (0, 1]; say € < 1.

Model problems of similar kind arise, for example, in numerical mod-
clling of stationary diffusion processes accompanied by first-order chemical
rcactions. The parameter ¢ characterizes the diffusion coefficient of the
involved matter, and the constant gg refer to the reaction rate.

As € — 0, regular boundary layers appear in small neighbourhoods of
the smooth parts of the boundary T, and corner (elliptic) layers appear in
a ncighbourhood of the sct Ty of the corner points. The data in (1) are
assumed to satisfy the necessary compatibility conditions on Ip.

For problem (1) we construct an iterative domain decomposition scheme,
that converges e-uniformly and also allows for parallel computations.

Let us first give an iteration-free difference scheme. On the set D we
introduce the rectangular grid

D-h = W) X Wy, (3)

where @, = {z}: 0= 2 < ... <z =d,} isa (possibly) nonuniform mesh
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on [0,d,], 5 =1,2. Define hi = z;*' — ri, o it ew,; let h < Mﬁ“:',
where? h = max;, hi, N =min[N;, Na]. -
We approximate problem (1) by the finite difference scheme

Awy(z(z)) = €’ 2:12 a.(2)0m s 2(z) — 9(z,2(x)) =0, =€ Dy, . (4#)
2(z) = p(z), = €Th | (4b)

Here Dy = DN Dy, T'y = I'N Dy, bmsz(z) = zsr:(7) 18 the second-order
(central) diflzvence derivative on the non-uniform mesh @, [1].

The difference scheme (4), (3) is monotone [1]. Using majorant functions
and taking into account certain a priori estimates (see, e.g., [2]), we find!
|u(z) — 2(z) | < Me-'N-1. z € Dy. So this scheme converges, as N =3 00,
for fixed values of the parameter ¢, but it does not convetge e-unifornly.”’

Note that we evaluate the errors in the maximiim norm (in Loo): Other
norms, e.g., the L,-norms (1< p <oo) and the weighted energy norm || - ls,
are unsatisfactory: in these norms the boundary layer vanishes for € — 0.

Now we introduce the special grid depending o €

Here w} = w}(v,) is a piecewise uniform mesh refined in the neighbour-
hood of the end-points of [0,d,]. In each interval [0,0,) and [d, - 0,y d,)
we use a fine mesh with step-size A = 40,N;!, and in [o,,d, — 0,)
we usc a coarse mesh with step-size h{? = 2(d, — 20,)N; I, We take
#, = min [47'd,, mi'eln N, ], where' 0 < my < m, my = (gu/ao)’f?. "
Let the solution Up(z) of the reduced equation g (z,Uo(z)) =0, 1:9617,'
satisfy the estimate ‘ :

|6* Up(z) / 9z} 023° | < Mgy, = € D, k<2 (6)

Theorem 1. Assume in (1) that aj,a2 € ci(D), g € C"'(Dx|—-M1, M, D,
o € CY(D), and let w € C'(D), 1 =4+a a>0, where My = My Mg),
M, > 18, and also let condition (2) be true with Mgy = M. Then the
difference scheme (4), (5) converges, as N — oo, e-uniformly with an ervor

bound given by .
\u(z) - #(z)] < MN-InN, =€ Dj.

Let the connected sets

DY, k=1,..., K (N

with piecewise smooth boundaries 1t = p* \ D*, cover the domain D:

3 Here and helow M, My (m, m;) denote sufficiently Iarge (#mall) posilive constants independent of ¢.
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k -
D = |J D*. We denote by D™ the union of the subdomains D', ..., D"
k=1 K .
excluding the set D*: p¥l = |J D'. We denote the minimal overlap of
i=1, iZk
the sets D* and D® by A*, and also let A denote the least value of A*,

k=1,...,I{, lc.
A= min p(s,3Y), o' €D' 2Fe DY, a2t ¢ {D'nDU}, (8)

i =1,..., I, where p(z', z?) is the distance between the points z!, 22eD.

In general, the value A may depend on the parameter e: A = A(e).
Now we construct a Schwartz method modified for implementation in a
parallel environment with P > 1 processors. This construction follows [3,4].

Let each subdomain D¥, k = 1,..., I from (7) be partitioned in P dis-
joint non-overlapping parts (some of them may be empty): D* = CI D;j,
k=1,...,1, D_,-kﬂﬁ;-k =0, i # j. Assume I‘: = E: \ D,’j. o

On the sets Ij: we construct the coherent meshes

DY =DinDy, k=1,....,K, p=1...,P, (9a)

where fjh = Eﬁ(a) or ﬁh = Ij:(s) Let F:h = ]j:h \ D;
Given the function 2°(z) on Dy satisfying condition (4b), we find the
sequence of the functions z"(z), z € Dy, r = 1,2,... from the solutions of

the discrete problems

A4 zr+%(-’5) =0, z € Dy,
)N EEI o
2K (z) =" (z), =€l
3 zr-l—irx, ;{;G-D—k‘ =1:-'-1P)
E(z) =" () & Pk , = € Dy,
% (z), €D\ D k=1,...,K,
z"“(:::) = zr+?’§(1:), z € Dp; r=0,1,2,... . (9¢)

Under the condition
. -1
A = Age) >0, €€(0,1], Eét{}){n[e A (e)] >0, (10)

we obtain the estimate (see (3] for the linear case)
| 2(z) — 2"(z) | < Mq', z € Dy, (11)
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where ¢ < 1 —m, e. g., we can take ¢ = cxp(—mgs*'A).IIf condition (10)
is violated, the functions z"(z) do not converge e-uniformly with respect to
the number r of iterations. On the special grid 77:(5) we have the estimate

|u(z) — 2’(z)| < M[N?’In® N +q"], =€ D,. (12)
Emphasize that the estimate for ¢ in (11), (12) is independent of €.

Theorem 2. The condition (10) is necessary and sufficient for e-uniform
convergence (as r — oco) of the functions 2"(z), 1. e., the solutions of the
decomposition scheme (9), (3) with P parallel solvers, to the solution z(z)
of the base scheme (4), (3). If the hypotheses of Theoremt 1 and also
condition (10) are fulfilled, the solutions 2"(x) of scheme (9), (5) converge,
as N, r — 0o, to the solution u(z) of the boundary value problem (1)
e-uniformly. Under condition (10), the estimates (11), (12) are valid.

The difference scheme is nonlinear. To solve the problem, we apply a lin-
earization procedure (1], replacing g(z, 2"(z)) by (z)(z((x) — 2_y)(2)) +
g(z,2{;_y)(x)). Here z3;)(z) is the i-th inner iteration, the function c(z) sat-
isfies the condition c(z)u — g(z,u) > cou, cg>0, where (8/0u)g(z,u) < g°,
(:r,u) €D x [ M{z), M(g)],

Thus, for parallelization of the romputational method, we have con-
structed iterative difference schémes that converge ¢-uniformly with re-
spect to both the number N of grid nodes and the number r of (outer)
iterations required for convergence of the iterative process.
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